Stars | Science Mission Directorate (2023)

Stars are the most widely recognized astronomical objects, and represent the most fundamental building blocks of galaxies. The age, distribution, and composition of the stars in a galaxy trace the history, dynamics, and evolution of that galaxy. Moreover, stars are responsible for the manufacture and distribution of heavy elements such as carbon, nitrogen, and oxygen, and their characteristics are intimately tied to the characteristics of the planetary systems that may coalesce about them. Consequently, the study of the birth, life, and death of stars is central to the field of astronomy.

Star Formation

Stars are born within the clouds of dust and scattered throughout most galaxies. A familiar example of such as a dust cloud is the Orion Nebula. Turbulence deep within these clouds gives rise to knots with sufficient mass that the gas and dust can begin to collapse under its own gravitational attraction. As the cloud collapses, the material at the center begins to heat up. Known as a protostar, it is this hot core at the heart of the collapsing cloud that will one day become a star. Three-dimensional computer models of star formation predict that the spinning clouds of collapsing gas and dust may break up into two or three blobs; this would explain why the majority the stars in the Milky Way are paired or in groups of multiple stars.

Powerful Stellar Eruption
The observations of Eta Carinae's light echo are providing new insight into the behavior of powerful massive stars on the brink of detonation.
Credit: NOAO, AURA, NSF, and N. Smith (University of Arizona)

(Video) iTECH – Science Mission Directorate Technology Overview

As the cloud collapses, a dense, hot core forms and begins gathering dust and gas. Not all of this material ends up as part of a star — the remaining dust can become planets, asteroids, or comets or may remain as dust.

In some cases, the cloud may not collapse at a steady pace. In January 2004, an amateur astronomer, James McNeil, discovered a small nebula that appeared unexpectedly near the nebula Messier 78, in the constellation of Orion. When observers around the world pointed their instruments at McNeil's Nebula, they found something interesting — its brightness appears to vary. Observations with NASA's Chandra X-ray Observatory provided a likely explanation: the interaction between the young star's magnetic field and the surrounding gas causes episodic increases in brightness.

Main Sequence Stars

A star the size of our Sun requires about 50 million years to mature from the beginning of the collapse to adulthood. Our Sun will stay in this mature phase (on the main sequence as shown in the Hertzsprung-Russell Diagram) for approximately 10 billion years.

(Video) Real Mars - Curiosity Panorama Near 'Sierra Maigualida'

Stars are fueled by the nuclear fusion of hydrogen to form helium deep in their interiors. The outflow of energy from the central regions of the star provides the pressure necessary to keep the star from collapsing under its own weight, and the energy by which it shines.

As shown in the Hertzsprung-Russell Diagram, Main Sequence stars span a wide range of luminosities and colors, and can be classified according to those characteristics. The smallest stars, known as red dwarfs, may contain as little as 10% the mass of the Sun and emit only 0.01% as much energy, glowing feebly at temperatures between 3000-4000K. Despite their diminutive nature, red dwarfs are by far the most numerous stars in the Universe and have lifespans of tens of billions of years.

On the other hand, the most massive stars, known as hypergiants, may be 100 or more times more massive than the Sun, and have surface temperatures of more than 30,000 K. Hypergiants emit hundreds of thousands of times more energy than the Sun, but have lifetimes of only a few million years. Although extreme stars such as these are believed to have been common in the early Universe, today they are extremely rare - the entire Milky Way galaxy contains only a handful of hypergiants.

(Video) The Special Ingredients Of Earth | Science Mission Directorate

Stars and Their Fates

In general, the larger a star, the shorter its life, although all but the most massive stars live for billions of years. When a star has fused all the hydrogen in its core, nuclear reactions cease. Deprived of the energy production needed to support it, the core begins to collapse into itself and becomes much hotter. Hydrogen is still available outside the core, so hydrogen fusion continues in a shell surrounding the core. The increasingly hot core also pushes the outer layers of the star outward, causing them to expand and cool, transforming the star into a red giant.

If the star is sufficiently massive, the collapsing core may become hot enough to support more exotic nuclear reactions that consume helium and produce a variety of heavier elements up to iron. However, such reactions offer only a temporary reprieve. Gradually, the star's internal nuclear fires become increasingly unstable - sometimes burning furiously, other times dying down. These variations cause the star to pulsate and throw off its outer layers, enshrouding itself in a cocoon of gas and dust. What happens next depends on the size of the core.

Stars | Science Mission Directorate (2)

Average Stars Become White Dwarfs
For average stars like the Sun, the process of ejecting its outer layers continues until the stellar core is exposed. This dead, but still ferociously hot stellar cinder is called a White Dwarf. White dwarfs, which are roughly the size of our Earth despite containing the mass of a star, once puzzled astronomers - why didn't they collapse further? What force supported the mass of the core? Quantum mechanics provided the explanation. Pressure from fast moving electrons keeps these stars from collapsing. The more massive the core, the denser the white dwarf that is formed. Thus, the smaller a white dwarf is in diameter, the larger it is in mass! These paradoxical stars are very common - our own Sun will be a white dwarf billions of years from now. White dwarfs are intrinsically very faint because they are so small and, lacking a source of energy production, they fade into oblivion as they gradually cool down.

This fate awaits only those stars with a mass up to about 1.4 times the mass of our Sun. Above that mass, electron pressure cannot support the core against further collapse. Such stars suffer a different fate as described below.

Stars | Science Mission Directorate (3)

White Dwarfs May Become Novae
If a white dwarf forms in a binary or multiple star system, it may experience a more eventful demise as a nova. Nova is Latin for "new" - novae were once thought to be new stars. Today, we understand that they are in fact, very old stars - white dwarfs. If a white dwarf is close enough to a companion star, its gravity may drag matter - mostly hydrogen - from the outer layers of that star onto itself, building up its surface layer. When enough hydrogen has accumulated on the surface, a burst of nuclear fusion occurs, causing the white dwarf to brighten substantially and expel the remaining material. Within a few days, the glow subsides and the cycle starts again. Sometimes, particularly massive white dwarfs (those near the 1.4 solar mass limit mentioned above) may accrete so much mass in the manner that they collapse and explode completely, becoming what is known as a supernova.

Stars | Science Mission Directorate (4)

Supernovae Leave Behind Neutron Stars or Black Holes
Main sequence stars over eight solar masses are destined to die in a titanic explosion called a supernova. A supernova is not merely a bigger nova. In a nova, only the star's surface explodes. In a supernova, the star's core collapses and then explodes. In massive stars, a complex series of nuclear reactions leads to the production of iron in the core. Having achieved iron, the star has wrung all the energy it can out of nuclear fusion - fusion reactions that form elements heavier than iron actually consume energy rather than produce it. The star no longer has any way to support its own mass, and the iron core collapses. In just a matter of seconds the core shrinks from roughly 5000 miles across to just a dozen, and the temperature spikes 100 billion degrees or more. The outer layers of the star initially begin to collapse along with the core, but rebound with the enormous release of energy and are thrown violently outward. Supernovae release an almost unimaginable amount of energy. For a period of days to weeks, a supernova may outshine an entire galaxy. Likewise, all the naturally occurring elements and a rich array of subatomic particles are produced in these explosions. On average, a supernova explosion occurs about once every hundred years in the typical galaxy. About 25 to 50 supernovae are discovered each year in other galaxies, but most are too far away to be seen without a telescope.

Stars | Science Mission Directorate (5)

Neutron Stars
If the collapsing stellar core at the center of a supernova contains between about 1.4 and 3 solar masses, the collapse continues until electrons and protons combine to form neutrons, producing a neutron star. Neutron stars are incredibly dense - similar to the density of an atomic nucleus. Because it contains so much mass packed into such a small volume, the gravitation at the surface of a neutron star is immense. Like the White Dwarf stars above, if a neutron star forms in a multiple star system it can accrete gas by stripping it off any nearby companions. The Rossi X-Ray Timing Explorer has captured telltale X-Ray emissions of gas swirling just a few miles from the surface of a neutron star.

Neutron stars also have powerful magnetic fields which can accelerate atomic particles around its magnetic poles producing powerful beams of radiation. Those beams sweep around like massive searchlight beams as the star rotates. If such a beam is oriented so that it periodically points toward the Earth, we observe it as regular pulses of radiation that occur whenever the magnetic pole sweeps past the line of sight. In this case, the neutron star is known as a pulsar.

Stars | Science Mission Directorate (6)

Black Holes
If the collapsed stellar core is larger than three solar masses, it collapses completely to form a black hole: an infinitely dense object whose gravity is so strong that nothing can escape its immediate proximity, not even light. Since photons are what our instruments are designed to see, black holes can only be detected indirectly. Indirect observations are possible because the gravitational field of a black hole is so powerful that any nearby material - often the outer layers of a companion star - is caught up and dragged in. As matter spirals into a black hole, it forms a disk that is heated to enormous temperatures, emitting copious quantities of X-rays and Gamma-rays that indicate the presence of the underlying hidden companion.

Stars | Science Mission Directorate (7)

From the Remains, New Stars Arise
The dust and debris left behind by novae and supernovae eventually blend with the surrounding interstellar gas and dust, enriching it with the heavy elements and chemical compounds produced during stellar death. Eventually, those materials are recycled, providing the building blocks for a new generation of stars and accompanying planetary systems.

Recent Discoveries

DateDiscovery
October 17, 2022Multiwavelength View of a Turbulent Stellar Nursery
October 12, 2022Hubble Spots Ultra-Speedy Jet Blasting from Star Crash
September 19, 2022An Enigmatic Astronomical Explosion (IRAS 05506+2414)
September 12, 2022Setting the Clock on a Stellar Explosion (SNR 0519-69.0)
September 8, 2022Hubble Finds Spiraling Stars, Providing Window into Early Universe
August 11, 2022Hubble Sees Red Supergiant Star Betelgeuse Slowly Recovering After Blowing Its Top
August 10, 2022Fermi Confirms Star Wreck as Source of Extreme Cosmic Particles
August 8, 2022Celestial Cloudscape in the Orion Nebula
July 25, 2022Embracing a Rejected Star (Zeta Ophiuchi)
June 15, 2022NASA's Chandra Catches Pulsar in X-ray Speed Trap (G292.0+1.8)
June 15, 2022Dead Star Caught Ripping Up Planetary System
May 16, 2022Hubble Spies a Glittering Gathering of Stars (NGC 6558)
May 9, 2022Aftermath of a Cosmic Cataclysm (DEM L 249)
May 5, 2022Hubble Reveals Surviving Companion Star in Aftermath of Supernova
March 30, 2022Record Broken: Hubble Spots Farthest Star Ever Seen
March 14, 2022Tiny Star Unleashes Gargantuan Beam of Matter and Antimatter (PSR J2030+4415)
March 8, 2022NASA's NICER Telescope Sees Hot Spots Merge on a Magnetar
March 7, 2022Hubble Snaps a Jet Set
March 1, 2022NASA’s NuSTAR Makes Illuminating Discoveries With ‘Nuisance’ Light
February 28, 2022The Unfolding Story of a Kilonova Told in X-rays (GW170817)
January 29, 2022Hubble Examines a Star-Forming Chamaeleon
January 25, 2022Visualization Explores a Massive Star's Great Eruption
January 12, 20221,000-Light-Year-Wide Bubble Surrounding Earth Is Source of All Nearby, Young Stars
November 23, 2021Hubble Finds Flame Nebula's Searing Stars May Halt Planet Formation
November 17, 2021Hubble Spies Newly Forming Star Incubating in IC 2631
November 16, 2021Nebula Churns Out Massive Stars in New Hubble Image
November 15, 2021SOFIA Observes Star Formation Near the Galactic Center
November 8, 2021Hubble Spots Dark Star-Hatching frEGGs
November 2, 2021Mysterious “Superbubble” Hollows Out Nebula in New Hubble Image
(Video) NASA'S Head of Science Mission Directorate Discusses History of Hubble Space Telescope

FAQs

What does the Science Mission Directorate do? ›

The Science Mission Directorate (SMD) engages the Nation's science community, sponsors scientific research, and develops and deploys satellites and probes in collaboration with NASA's partners around the world to answer fundamental questions requiring the view from and into space.

What does NASA science Directorate work on? ›

SMD organizes its work into five broad scientific pursuits: Earth Science, Planetary Science, Heliophysics, Astrophysics, and Biological and Physical Sciences. Each of these pursuits is managed by a Division within the Directorate, each having its own science sub-goals.

Is black hole real? ›

Black holes seem to be the stuff of science fiction (and, in fact, have starred in many sci-fi books and movies), so it's not uncommon for people to wonder, are black holes real? As it turns out, the answer is yes, though for a long time most scientists were convinced that black holes were purely theoretical objects.

What is the closest black hole to Earth? ›

The closest known black hole may have been found a cosmic stone's throw from Earth, just 1500 light years away. Called Gaia BH1, it is estimated to be about 10 times the mass of our sun.

Who are the top people in NASA? ›

The Administrator of the National Aeronautics and Space Administration is the highest-ranking official of NASA, the national space agency of the United States.
...
Administrator of NASA.
Administrator of the National Aeronautics and Space Administration
Incumbent Bill Nelson since May 3, 2021
Reports toPresident
SeatWashington, D.C.
7 more rows

What is a Science directorate? ›

The APA Science Directorate is responsible for all association efforts on behalf of its many science-oriented constituencies. Our broad mission is to communicate, facilitate, promote, and represent psychological science and scientists.

Videos

1. NASA Science Mission Directorate Dual-Anonymous Peer Review Virtual Town Hall
(ScienceAtNASA)
2. NASA'S Head of Science Mission Directorate Discusses History of Hubble Space Telescope
(NASA Video Collection)
3. Leading NASA's Science Mission Directorate - DR THOMAS ZURBUCHEN
(Your Space Journey)
4. Interview with DR THOMAS ZURBUCHEN: Associate Administrator for NASA’s Science Mission Directorate
(15 Minutes with Chuck)
5. NASA STEM Activation | Science Mission Directorate - 2017
(Heath)
6. 2008 NASA Science Mission Directorate Calendar
(eospso)
Top Articles
Latest Posts
Article information

Author: Dr. Pierre Goyette

Last Updated: 01/23/2023

Views: 6489

Rating: 5 / 5 (70 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Dr. Pierre Goyette

Birthday: 1998-01-29

Address: Apt. 611 3357 Yong Plain, West Audra, IL 70053

Phone: +5819954278378

Job: Construction Director

Hobby: Embroidery, Creative writing, Shopping, Driving, Stand-up comedy, Coffee roasting, Scrapbooking

Introduction: My name is Dr. Pierre Goyette, I am a enchanting, powerful, jolly, rich, graceful, colorful, zany person who loves writing and wants to share my knowledge and understanding with you.